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The onset of convection in two superimposed fluid layers of the same height is considered. It is found that
the neutral curve for R�a� for the onset Rayleigh number R in dependence on the wave number a is an invariant
of a multidimensional parameter space of property ratios of the system even though the corresponding con-
vection solutions may vary strongly with these property ratios. For each neutral curve R�a� two manifolds of
solutions are found one of which can be understood on the basis of symmetry properties of the system, while
the other does not exhibit simple symmetry features. In particular the neutral curves R�a� for various single
Rayleigh-Bénard convection layers are shown to correspond to two two-dimensional manifolds of solutions.
Analytical expressions for the latter are derived in the case of outer stress-free boundary conditions.
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I. INTRODUCTION

Convection in two superimposed horizontal layers of im-
miscible fluids has received much attention because of its
unusual dynamical features. Originally this problem was
considered in the geophysical context �1,2�, since there exists
evidence that convection in the Earth’s mantle may occur in
two layers separated by an interface at 660 km depth. Later
an oscillatory mode of convection was found �3� and the
possibility of resonances between convection flows in the
two layers has been studied �4�.

While most of the special features of double layer con-
vection have been reasonably well understood, the large di-
mension of the parameter space of the problem inhibits a
general overview of the properties of this dynamical system.
In addition to the Rayleigh number and the Prandtl number
which characterize convection in a single layer, many more
dimensionless parameters must be considered in double layer
convection, since the ratio of any material property of the
liquids gives rise to a new dimensionless parameter.

In this paper we want to draw attention to relationships
which are invariant of two-dimensional subspaces in the
space of property ratios. In particular we shall demonstrate
that the same neutral curve R�a� for the onset of convection
holds for two two-parametric manifolds of convection solu-
tions even though the functional dependences of the convec-
tion motion and the associated deviation � of the temperature
from the static distribution vary dramatically. Such kinds of
homologous bifurcations are a rather unexpected phenom-
enon and, to our knowledge, have not been found before. In
the following we shall start with a formulation of the math-
ematical problem of double layer convection in the case
when both layers have the same height. In Sec. III we shall
consider the more realistic case of rigid outer boundaries of
the double layer and in Sec. IV the assumption of stress-free
outer boundaries will permit an analytical treatment of the
problem. In both sections the role of the adjoint linear prob-
lem will be discussed. The paper closes with some conclud-
ing remarks in Sec. V.

II. MATHEMATICAL FORMULATION

We consider a horizontal layer of fluid of thickness d
superimposed onto another layer of the same thickness. The
two liquids are immiscible. The temperatures T2 and T1 at
the lower and at the upper boundaries, respectively, of the
double layer are fixed. The temperature T0 of the interface in
the case of the static state of pure conduction is given by

T0 =
��T1 + �T2

�� + �
, �1�

where ����� denotes the thermal conductivity of the lower
�upper� layer. Using d as length scale, d2 /� as time scale
where � is the thermal diffusivity of the lower liquid, and
�T2−T0� as scale of the temperature we obtain the dimen-
sionless equations

1

P
��t + v� · ��v� = − ��� + �0R��k + �0�

2v�, �2a�

� · v� = 0, �2b�

��t + v� · ���� =
1

�0
v� · k + �0�

2��, �2c�

describing convection in the upper layer. The symbols �0,
�0, �0, �0, and �0 denote the ratios of thermal expansivity,
dynamic viscosity, kinematic viscosity, thermal conductivity,
and thermal diffusivity, respectively, between the upper and
the lower layer,

�0 =
��

�
, �0 =

��

�
, �0 =

��

�
,

�0 =
��

�
, �0 =

��

�
. �3�

Equation �2� thus applies to the lower layer if �0, �0, �0, and
�0 are replaced by unity and the stars at the variables are
dropped. The variables � and �� in general involve the den-
sity ratio of the two layers, but they do not enter the analysis
considered in the following. The Rayleigh number R and the
Prandtl number P are defined by*busse@uni-bayreuth.de
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R =
�g�T2 − T0�d3

��
, P =

�

�
, �4�

where g is the acceleration of gravity. Since we consider the
conditions for onset of convection we drop the nonlinear
advection terms in the basic equations. We also restrict the
attention to the monotonous onset of convection which is
usually preferred �5�. The time derivatives can thus be ne-
glected.

Using a Cartesian system of coordinates �x ,y ,z� with the
z coordinate in the direction of k we obtain from the z com-
ponent of the �curl�2 of Eq. �2a� and its counterpart for the
lower layer

�4w� + R
�0

�0
	2�� = 0, �5a�

�4w + R	2� = 0, �5b�

where w� and w denote the z components of the velocity
vectors v� and v and 	2 is the two-dimensional Laplacian,
	2=�xx

2 +�yy
2 . The corresponding versions of the heat equa-

tions are

�2�� +
1

�0�0
w� = 0, �6a�

�2� + w = 0. �6b�

Through the elimination of �� and � we finally obtain

��6 − R
�0

�0�0�0
	2�w� = 0, �7a�

��6 − R	2�w = 0. �7b�

Usually the case is of interest when the Rayleigh numbers in
the two layers are not very different. We shall consider here
the special case when the Rayleigh numbers in the upper and
lower layers are equal; i.e., we shall assume

�0

�0�0�0
= 1. �8�

Since without loss of generality 	2w�=−a2w�, 	2w=−a2w
can be presumed, the x ,y dependence can be separated from
the z dependence, w�= f��z�g�x ,y�, w= f�z�g�x ,y�, where f�z�
and f��z� obey the same equation

�	3 + a2R�f ��� = 0, �9�

where the definition 	�d2 /dz2−a2 has been introduced.
At the outer boundaries either stress-free conditions

f = f� = 	2f = 0 at z = − 1,

f� = f�� = 	2f� = 0 at z = 1, �10�

or no-slip conditions

f = f� = 	2f = 0 at z = − 1,

f� = f�� = 	2f� = 0 at z = 1 �11�

will be assumed. The condition that � vanishes at the outer
boundaries has also been taken into account in conditions
�10� and �11�. At the interface, z=0, distortions and effects
due to the temperature dependence of surface tension will be
neglected. The vertical velocity thus vanishes at the interface
while the tangential velocities and the temperatures are equal
on both sides,

	2f − 	2f�
1

�0�0
= f = f� = f� − f�� = 0 at z = 0. �12�

The continuity of the heat flux and of the tangential stress
require

�0	2f� − 	2f�� = f� − �0f�� = 0 at z = 0, �13�

where condition �8� has been used.
For later reference we like to mention the adjoint problem

to the one just formulated. The solutions f̂�z� and f̂��z� of the
adjoint problem obey the same Eq. �9� but different boundary
conditions. In the case of stress-free outer boundary condi-
tions �10� these remain unchanged, but the no-slip outer
boundary conditions �11� are replaced by

f̂ = 	 f̂ = 	 f̂� = 0 at z = − 1,

f̂� = 	 f̂� = 	 f̂�� = 0 at z = 1. �14�

The conditions at the interface z=0 for the adjoint problem
are given by

f̂ − f̂��0 = f̂� − f̂���0�0 = 	 f̂ = 	 f̂� = 	 f̂� − 	 f̂��/�0

= 	2 f̂ − 	2 f̂� = 0 at z = 0. �15�

In general the adjoint problem does not describe a physically
realistic system.

In the following we wish to demonstrate the phenomenon
of homologous bifurcation first in the case �Eq. �11�� of no-
slip outer boundaries. Here numerical solutions of Eq. �9�
will be employed which have been obtained through Runge-
Kutta-type integrations. In order to gain more insight into the
mathematical structure of the problem, we shall consider in
Sec. IV analytical solutions of Eq. �9� with stress-free con-
ditions �10�.

III. RESULTS FOR NO-SLIP OUTER BOUNDARIES

A. Simple solutions

There are two special cases in which simple solutions of
the two equations �9� together with boundary conditions
�11�–�13� can be obtained. For �0=�0=�0=1 either solutions
f and f� that are antisymmetric in z or solutions f and f� that
are symmetric in z can be obtained. In the former case one
speaks of viscously coupled convection layers, while one
refers to the latter case as thermally coupled convection. For
a more detailed discussion see �5�. In both cases the solutions
f and f� and corresponding critical Rayleigh numbers Rc are
well known. In the antisymmetric case f and f� are identical

F. H. BUSSE AND M. PETRY PHYSICAL REVIEW E 80, 046316 �2009�

046316-2



with the solution for the onset of convection in a single layer
with a no-slip condition at one boundary and a stress-free
condition at the other boundary, while the temperature is
fixed on both boundaries. For this case Rc=1100.6 corre-
sponding to the wave number ac=2.682 �6�.

In the symmetric or thermally coupled case the solutions f
and f� correspond to those describing the onset of convection
in a single layer with two no-slip boundaries, one of which is
thermally insulating, while the temperature is fixed on the
other one. The critical value of the Rayleigh number in this
case is Rc=1295.8 corresponding to ac=2.552 �7�. Since this
value of Rc does not exceed by much the value of the vis-
cously coupled case we include it as physically relevant in
our analysis.

B. Homologous solutions

It can be shown that the solution for f�z� , f��z� in the
antisymmetric case of �0=�0=�0=1 persists for arbitrary
�0 ,�0 as long as �0=1 holds. This property is permitted by
the matching conditions �12� and �13� because all even de-
rivatives f�z� and f��z� vanish at z=0. The antisymmetry
with respect to z=0 of the temperature perturbation is recov-
ered if �� is multiplied by the factor �0. Examples of this
type of solutions may be seen in Figs. 1 and 2. While f�z�
and f��z� are independent of �0 ,�0, the corresponding tem-
perature exhibits a discontinuity of its derivative at z=0 for
�0�1.

A more surprising result is the property that the same
critical values and, in fact, the same R�a� relationship is ob-
tained for arbitrary values of �0, �0, and �0 as long as
�0�0�0=1 is fixed. The corresponding functions f�z� , f��z�
vary strongly with �0 and �0 for �0=1 / ��0�0�. Any symme-
try with respect to z=0 is now lost and � and �� do no longer
vanish at z=0 as is evident from Fig. 2. As a result a ten-
dency toward thermal coupling can be noticed as �0 in-
creases.

The origin of the fact that the same R�a� relationship
holds for arbitrary values of �0 and �0 in the case �0=1 as
well as in the case �0=1 / ��0�0� is as follows. The adjoint
problem in the case �0=1 must have by definition a solution

f̂�z� , f̂��z� corresponding to the same R�a� relationship. It
turns out that for arbitrary �0 and �0 this solution is provided
by the solution of the original problem in the special case
1 /�0=�0�0, i.e.,

f̂�z� = 	2f�z�, f̂��z� = �0	2f��z� . �16�

The existence of a solution of the adjoint problem thus leads
us to a new solution of the original problem. The reverse
relationship also holds for arbitrary �0 and �0. The solution

f̂�z� , f̂��z� of the adjoint problem in the case 1 /�0=�0�0 is
given by the same relationship �16� where the functions
f�z� , f��z� represent the solutions of the original problem for
�0=1.

An analogous situation is found in the case of the ther-
mally coupled mode. The symmetric solution persists as long
as �0�0�0=1 is satisfied. In this case � and �� and also f�z�
and �0f��z� are symmetric with respect to z=0. Conditions

-1 -0.5 0 0.5 1
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-1

0

1

2

w

FIG. 1. Vertical velocities as functions of z for Rc

=1100.6, ac=2.682. The functions w= f�z� , f��z� that have a posi-
tive derivative at z=0 have been obtained for �0=1 and arbitrary
values of �0 and �0 �solid line�, �0=�0=1 /�2, �0=2 �dotted line�,
and for �0=�0=0.5, �0=4 �dashed line�. The functions w
= f�z� , f��z� that have a negative derivative at z=0 have been ob-
tained for �0=0.5, �0=2, �0=1 �solid line�, �0=1, �0=2, �0

=0.5 �dashed line�, �0=2, �0=0.5, �0=1 �dotted line�, and for
�0=2, �0=1, �0=0.5 �dash-dotted line�.

-1 -0.5 0 0.5 1
z

-0.4

0

0.4

0.8

1.2

θ

FIG. 2. Temperature profiles as functions of z for Rc

=1100.6, ac=2.682. The curves correspond to the same cases as
shown in Fig. 1 except that the solid line with positive derivative at
z=0 requires �0=�0=1 for z
0 and becomes replaced by the dash-
double-dotted curve for �0=1, �0=2. In both cases �0 remains
arbitrary.
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�12� and �13� are satisfied in this way since all odd deriva-
tives vanish at z=0. Examples for such solutions are shown
in Figs. 3 and 4.

Again it is found that the same neutral curve R�a� also
holds for arbitrary values of �0 and �0 as long as the condi-

tion �0=1 is satisfied because in this latter case the solution
of the adjoint problem solves the original problem according
to relationships �16�. Examples for this case are displayed in
Figs. 3 and 4. No simple symmetries are found in this case.

IV. ANALYSIS FOR THE CASE OF STRESS-FREE OUTER
BOUNDARIES

When boundary conditions �10� are used, Eq. �9� for f and
f� can be solved explicitly in the form

f = A1 sin r�z + 1� + A2 sin p2�z + 1� + Ā2 sin p̄2�z + 1� ,

�17a�

f� = B1 sin r�z − 1� + B2 sin p2�z − 1� + B̄2 sin p̄2�z − 1� ,

�17b�

where the bar indicates the complex conjugate. r , p2 , p̄2 cor-
respond to the real and the two complex roots

r2 = − a2 + �a2R�1/3, �18a�

p2
2 = − a2 + �a2R�1/3�− 1 + i�3�/2 �18b�

of the cubic equation

�p2 + a2�3 = a2R . �19�

The second and third conditions of Eq. �12� can be used to

eliminate Ā2 and B̄2,

Ā2 = �− A1 sin r − A2 sin p2�/sin p̄2,

B̄2 = �− B1 sin r − B2 sin p2�/sin p̄2. �20�

The remaining four conditions of Eqs. �12� and �13� give rise
to the following four equations:

A1c1 + A2d1 − B1c1 − B2d1 = 0, �21a�

A1c2 + A2d2 + �B1c2 + B2d2�/��0�0� = 0, �21b�

A1c3 + A2d3 + �B1c3 + B2d3��0 = 0, �21c�

A1c4 + A2d4 − �B1c4 + B2d4�/�0 = 0, �21d�

where the coefficients cn ,dn ,n=1, . . . ,4 are given by

c1 = r cos r − p̄2 cot p̄2 sin r , �22a�

c2 = �r4 + 2a2r2 − p̄2
4 − 2a2p̄2

2�sin r , �22b�

c3 = �p̄2
2 − r2�sin r , �22c�

c4 = r�r2 + a2�2cos r − p̄2�p̄2
2 + a2�2cot p̄2 sin r , �22d�

d1 = p2 cos p2 − p̄2 cot p̄2 sin p2, �22e�

d2 = �p2
4 + 2a2p2

2 − p̄2
4 − 2a2p̄2

2�sin p2, �22f�
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FIG. 3. Vertical velocities as functions of z for Rc

=1295.6, ac=2.552. The functions w= f�z� , f��z� have been ob-
tained for �0=1, �0=0.5, �0=3 �dash-double-dotted line� and
�0=1, �0=2.5, �0=0.5 �double-dash-dotted line�. The solid curve
is symmetric in z and corresponds to �0=1 with arbitrary values of
�0 and �0. The dashed curve corresponds to �0=�0=0.5, �0=4.
The dash-dotted curve corresponds to �=0.5 and either �0

=1, �0=2 or �0=2, �0=1. The dotted line corresponds to �0

=�0=1 /�2, �0=2.
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FIG. 4. Temperature profiles as functions of z for Rc

=1295.6, ac=2.552. The curves correspond to the same cases as
shown in Fig. 3.
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d3 = �p̄2
2 − p2

2�sin p2, �22g�

d4 = p2�p2
2 + a2�2cos p2 − p̄2�p̄2

2 + a2�2cot p̄2 sin p2.

�22h�

In order that a nontrivial solution of Eq. �21� exists, the
determinant of the coefficient matrix must vanish. In the
cases

�0 = 1 �23a�

and �0 = ��0�0�−1 �23b�

the determinant assumes the relatively simple form

�c1d4 − c4d1��c3d2 − c2d3�	 1

�0�0
+ 1
��0 + 1/�0� . �24�

Determinant �24� vanishes when either

�c3d2 − c2d3� = 0, �25a�

or �c1d4 − c4d1� = 0. �25b�

In both cases the vanishing of the determinant does not de-
pend on the ratios �0 ,�0 ,�0 of material properties. Since one
of these three parameters is fixed by either one of conditions
�23� we thus conclude that the function R�a� and, in particu-
lar, its critical value Rc for onset of convection do not depend
on a two-dimensional subspace of the parameter space of the
problem. Constraint �8� must be observed, of course, but this
can be done through an appropriate choice of �0. Although
�0 is another free parameter of the problem, we shall not
include it in our count since it reflects the effect of the
Prandtl number which represents the parameter that usually
does not enter problems of onset of steady convection.

Condition �25a� for the vanishing of the determinant of
the coefficient matrix of Eq. �21� can be satisfied through a
particularly simple choice of R. Using the relationship

R�a� = ��2 + a2�3/a2 �26�

for ordinary Rayleigh-Bénard convection in the presence of
stress-free boundaries one finds r=� with the consequence
c2=c3=0. The important result is that Eq. �26� holds for all
values of property ratios �3� as long as condition �8� and
either Eq. �23a� or Eq. �23b� are satisfied. The well known
critical value Rc minimizing expression �26� is given by

Rc = 27�4/4 = 657.5 corresponding to ac =
1
�2

. �27�

In case �23a� we obtain as solution of Eq. �21�

A1 = B1, A2 = B2 = 0, �28�

which holds for arbitrary values of �0 and �0. This solution
describes convection of the “viscous coupling” type. The
vertical velocity is antisymmetric with respect to z=0 as are
the temperature perturbations � and �� when the latter is
multiplied by the factor �0.

For the adjoint problem a simple solution comparable to
Eq. �28� is found in the case 1 /�0=�0�0. Using representa-

tion �17� for the functions f̂�z� , f̂��z� we find a manifold of
solutions given by

Â1 = B̂1/�0, Â2 = B̂2 = 0. �29�

There thus must exist a manifold of solutions of the original
problem for arbitrary �0 and �0 with 1 /�0=�0�0. This mani-
fold is given by

A1 = A2
d1c4�0�1 + �0� − d4c1�1 + �0�

c1c4�1 − �0�0�
,

B1 = A2
d1c4�1 + 1/�0� − d4c1�1 + �0�

c1c4�1 − �0�0�
,

B2 = − A2/�0, �30�

where the coefficients c1 ,c4 ,d1 ,d4 are determined by expres-
sions �19�, �22a�, �22d�, �22e�, and �22h� together with ex-
pression �26�. This solution also describes convection of the
viscous coupling type. For �0= ��0�0�−1→1, when the ex-
pressions for A1 and B1 in Eq. �30� diverge, the solution
becomes equal to solution �28�. The dependence of w and �
on the parameters �0 ,�0 ,�0 resembles that of the solutions
plotted in Figs. 1 and 2. Of course, f� and f�� now vanish at
the outer boundary instead of f� and f��. The solution

f̂�z� , f̂��z� given by solution �30� according to expressions
�16� solves the adjoint problem in the case �0=1.

In case �25b� we again obtain two classes of solutions.
The simpler class is obtained this time for condition �23b�,

A2 = − A1c1/d1, B1 = − A1/�0, B2 = − A2/�0, �31�

which describes the onset of thermally coupled convection in
the two layers. In the particular case �0=1 solution �31�
describes the onset of convection in single fluid layer with
stress-free condition and a fixed temperature on one bound-
ary and a thermally insulating no-slip boundary on the other
side. The critical conditions for this problem are known from
the work �7�,

Rc = 816.748 corresponding to ac = 2.21. �32�

There is thus no need to solve Eq. �25b� for R and a, al-
though it is useful sometimes to have the entire neutral curve
R�a�. For arbitrary �0 and �0 solution �31� corresponds to
temperature perturbations that are symmetric with respect to
the interface z=0. The same property is also exhibited by
f�z� and �0f��z�.

Again another manifold of more complex solutions corre-
sponding to the same neutral curve R�a� with the critical
condition �32� is obtained when condition �23a� instead of
Eq. �23b� is applied,

A2 = A1�d1c2c3��0 − �0
−1� + c1d2c3�1 + �0�/�0

− c1c2d3��0 + �0/�0��/N , �33a�

B1 = A1�c1d2d3��0 − �0
−1� − d1c2d3�1 + �0�

+ d1d2c3�1 + �0
−1��/N , �33b�
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B2 = A1�d1c2c3��0 − �0
−1� − c1d2c3�1 + �0�

+ c1c2d3�1 + �0
−1��/N , �33c�

with

N � c1d2d3��0 − �0
−1� + d1c2d3�1 + �0�/�0

− d1d2c3�0�1 + �0
−1� . �33d�

According to expressions �16� this manifold of solutions is
related to the solutions of problem adjoint to the problem
solved by solution �31�. No obvious symmetries are exhib-
ited by solutions �33�. Similar to solution �28� that can be
obtained as a special case of solution �30� in the limit �0�0
→1, solution �31� is identical with the special case �0�0
=1 of solution �33�.

V. CONCLUDING REMARKS

The examples discussed in this paper demonstrate how
large manifolds of solutions may belong to a single eigen-
value relationship R�a�. In the particular problems investi-
gated here it was not even necessary to derive those eigen-
value relationships since they were available from the
literature on the onset of convection in a single fluid layer
heated from below. Two two-dimensional manifolds of solu-

tions have been identified for each of the four relationships
R�a� investigated in this paper. One of these two manifolds
can easily be derived from symmetry considerations, but the
other manifold could not be anticipated. Because of a rela-
tionship of form �16� between the solutions of the original
problem and its adjoint one it has been possible to identify
the second manifold of rather asymmetric solutions.

Although the particular mathematical properties of the
system investigated in this paper depend on the identity of
the two operators �9� in the two layers, it must be expected
that the results found here will persist in an approximate
sense when slight differences in the equations for the two
layers are admitted. It may thus be possible to derive condi-
tions for the onset of convection in superimposed fluid layers
based on perturbations of solutions presented in this paper
when Rayleigh numbers and heights of the layers do not
differ significantly, while high contrasts between the material
properties of the two fluids still exist.
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